
A REDUCED-ORDER MODEL FOR THERMAL RADIATIVE TRANSFER
PROBLEMS BASED ON MULTILEVEL QUASIDIFFUSION METHOD

Joseph Coale and Dmitriy Y. Anistratov
North Carolina State University, Raleigh, NC 27695-7909

jmcoale@ncsu.edu anistratov@ncsu.edu

ABSTRACT

Thermal radiative transfer (TRT) is a major piece in various multiphysics phenomena
which are driven by interaction between photons and matter. The dimensionality of TRT
problems is determined by the radiative transfer (RT) equation. In this paper, we study
a new approach for developing physics-based RT reduced-order models. We apply an
efficient method for solving coupled multiphysics equations that enables one to reduce
the dimensionality of the RT problem and combine it with a decomposition-based ap-
proach of reduced order modeling. This paper describes a reduced-order model for TRT
problems formulated by means of the multilevel quasidiffusion (QD) method with proper
orthogonal decomposition of the QD (Eddington) factors that carry essential information
about the RT high-order solution. The numerical results are presented to demonstrate
performance of the proposed method.
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1. INTRODUCTION

We consider the thermal radiation transfer (TRT) problem defined by the time-dependent multi-
group radiative transfer (RT) equations
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coupled with the energy balance (EB) equation
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where Ig (r,Ω, t)=
∫ hνg+1

hνg
Iν (r,Ω, ν, t) is the group radiation intensity. We use standard notations.

The dimensionality of the TRT problem is driven by the RT equation. In general, the radiation
intensity is a 7-dimensional function of the photon spatial position (r), the direction of its flight
(Ω), photon energy group (g) or frequency (ν), and time. In this paper we present analysis of
elements of the approach for reduced-order modeling for TRT problems that can be used as the
basis for simulation of complex multiphysics radiative transfer problems.



To reduce dimensionality, the proposed approach is based on the multilevel nonlinear projective-
iterative (MNPI) methodology [1,2]. The transport problem is recast in a form of a multilevel
system of effective low-order transport equations for angular and energy moments of the transport
solution. The multilevel system of high-order and low-order equations is closed by means of exact
relationships involving factors (functionals) that are weakly dependent on the transport solution.
The low-order problem at each level reproduces exactly photon transport physics. This is achieved
by averaging with respect to the angular and energy variables without any approximations. The
MNPI methodology is combined with the discrete version of the proper orthogonal decomposition
(POD) that is capable in generating a low-dimensional description of high-dimensional data and
capturing essential pieces of physics [3–5]. This paper describes a reduced-order model (ROM)
for TRT problems based on the multilevel quasidiffusion (QD) method [1,6].

2. MULTILVELEL QD METHOD FOR TRT PROBLEMS

The following equations formulate the multilevel QD (MLQD) method for TRT problems in 1D
slab geometry for 0 ≤ x ≤ H and 0 ≤ t ≤ tend [7–9]:

• The high-order RT equation for the group intensity (Ig(x, µ, t))
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• The multigroup low-order QD (LOQD) equations for the group radiation energy density (Eg (x, t))
and flux (Fg (x, t))
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is the group QD (Eddington) factor.

• The grey LOQD equations for the total radiation energy density (E (x, t)) and flux (F (x, t))
coupled with the EB equation
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where
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is the grey QD factor,
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are different grey opacities averaged with the group low-order solution, and
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is a compensation term.

The group QD factors are coefficients of the multigroup LOQD equations. They carry all informa-
tion about the transport solution that the hierarchy of the low-order equations (4) and (6) needs to
accurately model photon transport physics. The high-order problem (3) can be viewed as a special
one that generates a shape function used to average µ2 and to compute the group QD factors. The
role of the hierarchy of low-order equations is to generate the moments of the transport solution
and communicate with the energy balance equation as an element of a multiphysics model. The
system of LOQD and EB equations (4)-(7) is the basis for reduced-order modeling in which the
group QD factors are components of a compressed data set representing high-order transport solu-
tion. To further reduce dimensionality and develop advanced ROMs for TRT problems, we apply
POD to the group QD factors. The purpose of this study is to evaluate the potential of developing
a parametrized ROM for TRT problems based on MLQD method with POD. We analyze accuracy
of the solution obtained by the hierarchy of the LOQD equations with approximate fg examining
POD modes of group QD factors of different scales.

The remainder of this paper is organized as follows. In Sec. 3, the POD approximation of the
QD factors is formulated. In Sec. 4, numerical results are presented. We conclude with a brief
summary in Sec. 5.

3. POD-BASED REPRESENTATION OF GROUP QD FACTORS

The POD was originally created as a method of solving problems by using previously found data to
estimate new results [3–5]. This method involves solving the given problem, creating a database of
results for a desired variable. This database is formed as a matrix A with dimension (X, τ) where
X and τ are the number of spatial and temporal discrete nodes respectively. Then the singular value
decomposition (SVD) is applied to the data matrix A. The low-rank approximations of A based
on SVD can be used to generate an optimal low-order approximation of the data set and hence
reduce dimensionality of the problem. The SVD presents the matrix in the form of A = UΣVT ,
where A ∈ IRm,n, U ∈ IRm,k holds the left singular vectors in its columns, Σ ∈ IRk,k is diagonal
and consists of the singular values along its diagonal in decreasing order, VT ∈ IRk,τ holds the
right singular vectors in its rows, where k = min (m,n) is the rank of A. A may be approximated
as a matrix of rank r < k by reducing the dimension k → r in its SVD. This effectively removes
columns from U, diagonal values from Σ and rows from VT .



The set of group QD factors fg(x, t) on grids in energy, space and time is considered as the collec-
tion of samples of the physical system behaviour that characterize transport effects. The methodol-
ogy of the POD is applied to the complete data set of QD factors for the given problem separately
in each group. First we solve the TRT problem with the MLQD method to generate the solution
for some particular mesh in space and time [9]. Then the QD factors form G group-wise matri-
ces Af

g ∈ IRX,τ such that each matrix holds one energy group set of QD factors. Each column
in Af

g contains the spatial vector of QD factors at a separate instant of time (snapshots), ordered
chronologically. The SVD is applied to each Af

g to cast Af
g = UgΣgV

T
g where Ug ∈ IRX,k,

Σg ∈ IRk,k, VT
g ∈ IRk,τ , and k = min (X, τ). We then define a singular value relative cutoff

criteria εσ < 1. For each set of singular values per group, (σ1,g, . . . , σk,g), there will be a rg ≤ k
such that σn,g/σ1,g ≥ εσ for all n ≤ rg. The reduced rank approximations of each group QD
factor matrix is computed as Ãf

g = ŨgΣ̃gṼ
T
g where Ũg ∈ IRX,rg , Σ̃g ∈ IRrg ,rg , ṼT

g ∈ IRrg ,τ . The
original TRT problem is then solved by means of the hierarchy of the LOQD equations (4) and (6)
coupled with the EB equation (7) using the group QD factor approximated by Ãf

g . We note that the
high-order RT equation is not solved. Hereafter we refer to this ROM as the MLQD-POD model.

4. NUMERICAL RESULTS

In this section we present computational results for a 1-D problem based on the Fleck-Cummings
test [10], used to study the accuracy of MLQD-POD models. A 1-D slab of one material is defined
as 6 cm thick. The material opacity is given by κν = 27

(hν)3

(
1 − e−

hν
kT

)
. The left boundary has

incoming radiation with black-body spectrum at temperature kTin = 1 keV and the right boundary
is vacuum. The initial temperature of the slab is kT0 = 1 eV and the initial radiation distribution
is given by the black-body spectrum at this temperature. We define the material energy as a linear
function of temperature ε = cνT where cν = 0.5917aRT

3
in. The spatial mesh is a uniform 60 cells

with length 0.1 cm. We use 17 energy groups and the double S4 Gauss-Legendre quadrature set.
Convergence criteria for temperature and energy density are defined as εT = εE = 10−12.

The problem is solved over 0 ≤ t ≤ 6 ns using the time step ∆t = 2 × 10−2 ns. Thus, there
are 300 time steps. This is number of snapshots used to build data set of QD factors. We con-
sider approximate MLQD-POD models for this TRT problem defined using different reduced rank
representations of the group QD factors computed from our reference solution. We use singular
value relative cutoff criteria of εσ = 10−1, 10−2, . . . 10−12. Figure 1 presents the relative error of
the solution of these MLQD-POD models obtained with ∆t = 2× 10−2 ns compared to the refer-
ence solution in the∞-norm at every instant of time that we calculated. These results show how
the accuracy of MLQD-POD models improves as εσ decreases. Note that both temperature and
energy density obtained by means of the MLQD-POQ models eventually reach the solution found
using the reference QD factors. Table I displays the number of singular values involved per energy
group at different values of εσ. The number of singular values used in a particular energy group
corresponds to the low-rank approximation of QD factors in the group. Since the test problem has
60 spatial cells the vector of cell-average QD factors in space has 62 values including 2 boundary
values. When εσ = 10−12, all singular values at all groups are used and thus the problem no longer
utilizes a reduced rank approximation. We notice that group 2 uses significantly more singular
values than any other energy group for large εσ. Figure 2 depicts the singular values relative to the
largest singular value for 6 sample energy groups (g = 1, 2, 4, 8, 12, 17). Here one can see that the
point where the singular values level off to a lower bound is smaller for each successive energy



group excluding group 1. The structure of singular values in group 2 is such that it is required to
use most of them to represent the QD factor in this group with a very low value of εσ. To show the
effective ‘worth’ of the singular values corresponding to each εσ, we use γn =

∑n
i=1 σ

2
i /
∑k

i=1 σ
2
i

where the numerator can be interpreted as the ‘energy’ contained in POD modes [11]. Here we set
n = rg as defined in Sec. 3. Table II displays 1− γn for the energy groups g = 1, 2, 4, 8, 12, 17 for
the same εσ values shown in Table I. 1− γn is chosen over γn for the sake of clarity.

(a) Temperature relative error (b) Energy density relative error

Figure 1. Relative error in the∞-norm of MLQD-POD solutions computed for different εσ value
compared to the reference TRT solution.

Figure 2. Normalized singular values for energy groups 1, 2, 4, 8, 12, 17.

There are well-known classical ROMs for the RT equation, such as the time-dependent diffusion
equation, P1 and P1/3 approximations [12]. We solved the above TRT test with ∆t = 2× 10−2 ns
on the same spatial mesh using these three different RT approximations instead of the high-order
RT equation. Figure 3 displays the relative errors in numerical solutions obtained by means of
these reduced-order TRT models. The obtained results show that the MLQD-POD models with



Table I. Number of singular values used per energy group for decreasing values of εσ

εσ\ g 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17

10−1 1 1 2 2 2 1 1 1 1 1 1 1 1 1 1 1 1

10−2 1 8 6 5 5 4 3 3 3 3 3 3 3 4 4 4 4

10−3 1 18 14 11 10 7 7 7 7 7 7 8 8 8 8 9 9

10−4 2 19 21 17 16 14 12 11 11 12 12 12 13 13 14 14 14

10−12 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62 62

Table II. 1− γrg for select energy groups for decreasing values of εσ

εσ\ g 1 2 4 8 12 17

10−1 3.9 ×10−9 1.7 ×10−3 1.4 ×10−3 2.5 ×10−4 3.8 ×10−4 5.5 ×10−4

10−2 3.9 ×10−9 4.2 ×10−4 6.9 ×10−5 2.2 ×10−5 4.4 ×10−5 2.5 ×10−5

10−3 3.9 ×10−9 1.4 ×10−8 4.8 ×10−7 1.9 ×10−7 1.9 ×10−7 5.1 ×10−7

10−4 4.1 ×10−10 5.0 ×10−9 5.6 ×10−9 2.9 ×10−9 6.3 ×10−9 7.7 ×10−9

10−12 0 0 0 0 0 0

(a) Temperature relative error (b) Energy density relative error

Figure 3. Relative error in the∞-norm of solutions obtained by the diffusion, P1 and P1/3 approx-
imations with ∆t = 2× 10−2 ns compared to the one calculated by means of the RT equation.



εσ ≤ 10−2 generate more accurate solutions than these classical ROMs. We also notice that the
errors in the solution of the P1 model is close to one of the MLQD-POD model with εσ = 10−1.

We now use the POD approximation of the QD factors to solve the test problem with smaller time
steps compared to the time step used to generate the QD factors. To perform such calculations we
linearly interpolate between values in our database to estimate the QD factors at needed instants
of time [13]. Figure 4 shows the relative error in L1-norm of the MLQD-POD solution computed
with ∆t= 10−2 ns using various values of εσ. Figure 5 presents the relative error in the solutions
computed with ∆t=2×10−3 ns. The error in the MLQD-POD model saturated at εσ = 10−4 and
smaller values are not shown.

The MLQD-POD models can be used as a basis for developing a parametrized ROM for a class of
TRT problems using QD factors estimated from a set of base cases. In this paper we consider ROM
with parametrization with respect to temperature Tin of incoming radiation at the left boundary. We
form a database of the group QD factors for problems with two selected temperatures of incoming
radiation T (1)

in and T (2)
in . The MLQD-POD solutions of TRT problems with incoming radiation at

some given temperature are calculated using the group QD factors obtained by linear interpolation
between values in the database. We present the results for two parametrized ROMs. One model
uses T (1)

in = 1 KeV and T (2)
in = 0.98 KeV. The second one is formed with T (1)

in = 1 KeV and
T

(2)
in = 0.96 KeV. The data is generated for ∆t = 2 × 10−2 ns. The spatial and angular mesh

is same as above. Figure 6 shows the relative error in L1-norm in the solution for Tin = 0.99
KeV computed by means of first parametrized MLQD-POD model with various values of εσ. The
solution is compared to the reference TRT solution at Tin = 0.99 KeV. Figure 7 presents the
relative error of the MLQD-POD solution for Tin = 0.98 KeV obtained from the second model
that is parametrized with a larger interval of [T

(1)
in , T

(2)
in ].

5. CONCLUSIONS

In this paper we described a new reduced-order method for solving TRT problems. The numerical
results demonstrated that the presented MLQD-POD model with a data set generated by means
of rather low-rank representation of QD factors in space and time sufficiently accurately approxi-
mates the solution of TRT problems. As the rank of the approximation is increased, the accuracy
of the model gradually improves. The low-rank version of this QD factor data set can be used as
a basis for creating efficient ROMs for multiphysics simulations of evolution of temperature and
radiation energy waves. The broad class of TRT problems involves various parameters, for exam-
ple, material opacities, incoming radiation fluxes, initial distribution of temperature etc. The TRT
solution depends differently on these parameters. The obtained results of the MLQD-POD model
parametrized with respect to temperature of incoming radiation are promising. They showed that
this kind of ROMs has potential in parametric model reduction for TRT problems.
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(a) Temperature relative error (b) Energy density relative error

Figure 4. Relative error in the L1-norm of MLQD-POD solutions computed with ∆t=1×10−2 ns
versus the reference TRT solution. The MLQD-POD model is generated with ∆t=2×10−2 ns.

(a) Temperature relative error (b) Energy density relative error

Figure 5. Relative error in the L1-norm of MLQD-POD solutions computed with ∆t=2×10−3 ns
versus the reference TRT solution. The MLQD-POD model is generated with ∆t=2×10−2 ns.



(a) Temperature relative error (b) Energy density relative error

Figure 6. Relative error in the L1-norm of the MLQD-POD solutions computed with
Tin = 0.99 KeV using base cases with T̃ 1

in = 1 KeV and T̃ 2
in = 0.98 KeV.

(a) Temperature relative error (b) Energy density relative error

Figure 7. Relative error in the L1-norm of the MLQD-POD solutions computed with
Tin = 0.98 KeV using base cases with T̃ 1

in = 1 KeV and T̃ 2
in = 0.96 KeV.
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